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The effect of nonisothermicity on the characteristics of an incom-
pressible boundary layer is investigated. It is assumed that the vis-
cosity is temperature dependent.

The possibility of boundary-layer control based on
variation of the coefficient of viscosity was examined
in [1,2]. More recently, the question of the effect of
nonisothermicity on the characteristics of a com-
pressible boundary layer, particularly separation,
has received considerable attention. This work is re-
viewed in [3]. The present note is concerned with the
effect of nonisothermicity on the characteristics of an
incompressible boundary layer, when the viscosity de-
pends on temperature. The investigation is based on a
numerical finite-difference solution (see [4]).

Reduced to dimensionless form, the equations of
the steady-state boundary layer are written as follows:
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and B are given constants; U(x), V(y), Ty(x), Ti&),
®(y) are given functions.

To integrate system (1), we use the method of finite
differences [4], employing an absolutely stable im~-
plicit scheme.

Then system (1) may be approximated by the fol-
lowing difference system:
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with the corresponding boundary conditions: x; = iAx,
Vg =kay, i=1,2,3, ..., k=123, ...,K

If the values of uj_y, ks Vi-1 k- Ti-1,k are known
for some i, the third equation of system (2) reduces

to the form

T — 20T e g+ 6T per = oo (3)

where 4, brs Cs gy are known quantities. We solve
(3) by the pivotal method [5]. Having solved system
(3), we determine T; ;. After determining T;
deal similarly with the flrst equation of system (2)

After having found uj k we determine vi k from the
second equation of system (2). We then proceed to de-
termine Ti;y ks Uity k» Vi4 q,k» StCe

The calculations were made for the case in which
Ux)=1-x, V(y) =1, Ty(x) = A, T{x) =0(y) =B
Instead of the condition u = U(x) at y = « we took the
condition du/dy = 0 at Vi = KAy, the point K being so
selected that the condition uj g = U(x;) was satisfied
with given accuracy.

It was assumed that the viscosity depends on tem-~
perature according to the Bachinskii formula p(T) =
= up/(by + by T). All the calculations were made for
lubricating oil, whose characteristics were taken from
[6].

The following cases were considered:

1) viscosity independent of temperature: u(T) =

2) viscosity dependent on temperature: a) wall tem-
perature 20° C, freestream temperature 40° C. For
this case
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b) wall temperature 40° C, freestream temperature
20° C. For this case,
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The location of the separation point was determined
from the condition du/dy |y=o = 0, which in finite-
difference form becomes
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Calculations gave the following location of the sep-
aration points:
0.1250>xsep>0.1225 for p =1,
.
1+ 2.24T"
_.~_.1 -
1 —0.69T

0.09750 > xgqy, > 0.09625 for p =
0.16750 > xgep>>0-16625 for p =

Clearly, when the viscosity is temperature-depen-
dent, the nonisothermicity has an important influence
on the location of the separation points. In particular,
when the wall is heated the separation point is shifted
considerably downstream.

Figure 1 shows the -velocity profiles at the point
x = 0.05, while Fig. 2 shows the profiles near the sep-
aration points. It is clear from Fig. 1 that when the
wall temperature is lower than the freestream temper-
ature the velocity profile has a point of inflection.

This leads to earlier separation. When the wall tem-
perature is lower [sic] than the freestream temper-
ature, a point of inflection appears only near the sep-
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Fig. 1. Velocity profiles at x = 0.05:
1) p=1; 2) 1/1+ 2.24T; 3) 1/1 ~ 0.697T.

aration point (Fig. 2). Figure 3 shows how the noniso-
thermicity of the flow affects the displacement thick-

1 ,
ness 0% = I \g (U —u) dx. The integral was evaluated
0

numerically from y, to yx = KAy according to the
trapezoidal rule. Clearly, cooling the wall reduces
and heating it increases the thickness of the boundary
layer.

In the computations the steps Ax, Ay, and K were
so chosen that within the accuracy selected a decrease
in Ax and Ay and an increase in K had no effect on the
results. We finally selected Ax = 0.0003125, Ay =
= 0.02, K = 201 for the cases u{T) = 1 and u(T) =
=1/(1 +2.24T), K = 301 for the case u(T) = 1/1 —

- 0.69T.
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Fig. 2. Velocity profiles near separa-

tion points: 1) p = 1 at x = 0.1225; 2)

1/1 +2.24T at x = 0.09625; 3) 1/1 ~
— 0.69T at x = 0.16625.

10

as

0 aos af an x

Fig. 3. Boundary-layer displacement thickness:
1) p=1;2) 1/1 +2.24T; 8) 1/1 - 0.697T.
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In the calculations whose results are presented
above we took Pr = 7Tand D = 0 in view of the small-
ness of D at the selected values of the parameters.

The calculations were performed on a Minsk-2 com-
puter.

NOTATION

u and v are velocity components; T is the temper-
ature; U is the velocity of the potential flow; u is the
coefficient of viscosity; p is the density of the fluid;

J is the mechanical equivalent of heat; a is the thermal
diffusivity; v is the kinematic coefficient of viscosity;

Ugs Mg, L& A, B are characteristic constants; 6* is the

displacement thickness of the boundary layer; Re =

= Uglp; Pr = v/a; D = yUs/pC_JaAT; AT = B ~ A;

cp is the specific heat at constant pressure.
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